- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Aghoghovbia, Ogheneyoma (1)
-
Al‐Fahdi, Mohammed (1)
-
Anam, Md Zaibul (1)
-
Fung, Victor (1)
-
Hu, Ming (1)
-
Kong, Lingyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The rapid development of universal machine learning potentials (uMLPs) has enabled efficient, accurate predictions of diverse material properties across broad chemical spaces. While their capability for modeling phonon properties is emerging, systematic benchmarking across chemically diverse systems remains limited. We evaluate six recent uMLPs—EquiformerV2, MatterSim, MACE, and CHGNet—on 2429 crystalline materials from the Open Quantum Materials Database. Models were used to compute atomic forces in displaced supercells, derive interatomic force constants (IFCs), and predict phonon properties including lattice thermal conductivity (LTC), compared with density functional theory and experimental data. The EquiformerV2 pretrained model trained on the OMat24 dataset exhibits strong performance in predicting atomic forces and third‐order IFCs, while its fine‐tuned counterpart consistently outperforms other models in predicting second‐order IFCs, LTC, and other phonon properties. Although MACE and CHGNet demonstrated comparable force prediction accuracy to EquiformerV2, notable discrepancies in IFC fitting led to poor LTC predictions. Conversely, MatterSim, despite lower force accuracy, achieved intermediate IFC predictions, suggesting error cancellation and complex relationships between force accuracy and phonon predictions. This benchmark guides the evaluation and selection of uMLPs for high‐throughput screening of materials with targeted thermal transport properties.more » « lessFree, publicly-accessible full text available October 15, 2026
An official website of the United States government
